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ABSTRACT

Ischemic heart diseases (IHDs) remain major public health problems with high rates of morbidity
and mortality worldwide. Despite significant advances, current therapeutic approaches are unable
to rescue the extensive and irreversible loss of cardiomyocytes caused by severe ischemia. Over the
past 16 years, stem cell-based therapy has been recognized as an innovative strategy for cardiac
repair/regeneration and functional recovery after IHDs. Although substantial preclinical animal stud-
ies using a variety of stem/progenitor cells have shown promising results, there is a tremendous
degree of skepticism in the clinical community as many stem cell trials do not confer any beneficial
effects. How to accelerate stem cell-based therapy toward successful clinical application attracts
considerate attention. However, many important issues need to be fully addressed. In this Review,
we have described and compared the effects of different types of stem cells with their dose, deliv-
ery routes, and timing that have been routinely tested in recent preclinical and clinical findings. We
have also discussed the potential mechanisms of action of stem cells, and explored the role and
underlying regulatory components of stem cell-derived secretomes/exosomes in myocardial repair.
Furthermore, we have critically reviewed the different strategies for optimizing both donor stem
cells and the target cardiac microenvironments to enhance the engraftment and efficacy of stem
cells, highlighting their clinical translatability and potential limitation.
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SIGNIFICANCE STATEMENT

Stem cell-based therapy has shown therapeutic superiority after ischemic heart diseases. To acceler-
ate such therapy toward successful clinical application, many important issues need to be
addressed. This review compared different types of stem cells with their dose, delivery routes and
timing based on recent preclinical and clinical findings, discussed the underlying mechanisms of
stem cells and particularly explored the importance of secretomes/exosomes in myocardial repair,
and critically reviewed the different optimized strategies for stem cell-based therapy with their clini-
cal translatability and potential limitation.

INTRODUCTION

Ischemic heart diseases (IHDs) resulting from
coronary artery diseases and myocardial infarc-
tion (MI) are major public health problems with
high rates of morbidity and mortality worldwide
[1]. Severe MI leads to an extensive and irrevers-
ible loss of cardiomyocytes, followed by adverse
left ventricular (LV) remodeling and cardiac dys-
function [2]. Current clinical approaches, includ-
ing pharmacological, mechanical, and physical
interventions, improve symptoms and quality
of life of MI patients to a certain degree, how-
ever, they are insufficient to compensate the
loss of myocardium and are still palliative, just
delaying the progression of heart failure. Since

the first use of bone marrow cells for the
treatment of infarcted myocardium [3], the
emergence of stem cell-based therapy has
generated great hope for patients suffering
from cardiac injury.

CELL RESOURCES FOR STEM CELL-BASED

MYOCARDIAL REPAIR

Over the past decade, a wide variety of stem
cells have been investigated for repair of the
injured myocardium in substantial preclinical
and clinical studies. The candidate stem cells
can be broadly divided into two categories:
pluripotent stem cells and adult stem cells.
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Table 1 summarizes the recently published clinical trials
involving stem cell-based therapy for acute MI (AMI) and
chronic IHDs.

CELL TYPES

Pluripotent Stem Cells

Pluripotent stem cells (PSCs), including embryonic stem cells
(ESCs) [32] and induced pluripotent stem cells (iPSCs) [33],
possess robust abilities to self-renew and differentiate into
cardiac lineages [34]. Specifically, ESC- and iPSC-derived cardi-
omyocytes (ESC-/iPSC-CMs) exhibit structural and functional
properties similar to adult cardiomyocytes [34–36]. When
transplanted into the infarcted myocardium, ESC-/iPSC-CMs
progressively mature and generate grafted myocardium, lead-
ing to cardiac functional improvements [37, 38]. A recent
study by Tachibana et al. found that transplantation of ESC-/
iPSC-CMs exhibited ventricular functional improvements,
accompanied by limited cell engraftment [39], suggesting that
the paracrine activity of these cells may underlie the salutary
effects. Accumulating evidence reveals that secretomes/exo-
somes derived from PSCs and their cardiac derivatives can
activate endogenous stem cells, enhance neovascularization,
inhibit cardiomyocyte apoptosis, and suppress fibrosis in ani-
mal models of MI [40–43] (Table 2).

The clinical application of human PSCs has been halted by
several key concerns. For ESCs, ethical issue and safety con-
cerns such as teratoma formation and immunological rejection
severely limit their clinical translation. On the other hand,
iPSCs constitute an autologous patient-specific resource that
excludes any ethical or immunological concerns, however,
their pluripotent nature may cause teratogenic risk [67]. To
promote the clinical translation of PSC therapy in cardiac dis-
eases, two research groups successively used nonhuman pri-
mate models of MI to assess the safety and feasibility of
human ESC-CM or allogeneic iPSC-CM transplantation. They
showed that these ESC-/iPSC-CMs remuscularized the
infarcted primate myocardium to varying degrees, and dis-
played electromechanical coupling with the host myocardium
[68, 69]. No evidence of immune rejection and tumor forma-
tion was observed, however, human ESC-CM transplantation
caused nonfatal arrhythmias, which were rarely reported in
rodent models [68]. The inconsistence of arrhythmic occur-
rence may be due to the differences in heart size and beating
rate between primates and smaller animals. Larger hearts
that require more cells to be delivered and slower rate may
increase the incidence of arrhythmias [68]. The potential
arrhythmic complication should be emphasized in clinical
translation of PSC therapy.

Based on good manufacturing practice (GMP)-standard pro-
duction and a serial of safety assessment, Menasche et al.
reported the first clinical application of human ESC-derived car-
diac progenitor patch in a patient with severe heart failure
(Table 1). The patient showed symptomatical improvements after
three months without any complications including arrhythmias,
tumor formation, or immunosuppression-related adverse events
[25, 70]. Although the safety and efficacy of these cells need to
be further evaluated with more patients and larger randomized
trials, these findings suggest a big step forward for the clinical
application of human ESCs in cardiac diseases.

Adult Stem Cells

Bone Marrow Mononuclear Cells. Bone marrow mononu-
clear cells (BMCs) represent the most widely used adult stem
cells (ASCs) in myocardial cell therapy because of their rela-
tive abundance in the bone marrow and easy isolation via
density gradient centrifugation. BMCs are a mixed population
of various stem/progenitor cells [67, 71]. To date, intracoro-
nary autologous BMC therapy has yielded inconsistent results.
Several early clinical trials such as BOOST and REPAIR-AMI
indicated that BMC therapy improved LV ejection fraction
(LVEF) after AMI [72, 73], whereas more recent trials did not
detect sufficient benefits of BMCs in LVEF recovery [4, 8, 11,
12, 15, 16] (Table 1). Intracoronary infusion of unselected
BMCs has shown extremely low retention in the hearts that
may limit their clinical outcomes. A study in AMI patients
found only <3% of unselected BMCs (�10-fold lower than
that of CD341 cells) retained within the infarcted myocardium
1 hour after infusion [74]. Another study demonstrated that
compared with transendocardial delivery, intracoronary cell
transplantation resulted in lower retention rates and less
functional improvements in patients with dilated cardiomyop-
athy [75]. Furthermore, the heterogeneity of BMCs may also
contribute to the variable results of BMC therapy. According
to the detailed analysis of BMCs from patients in the TIME,
LateTIME, and FOCUS trials, a larger percentage of CD341 or
CD311 BMCs correlated with greater improvements in LVEF
or infarct size after cell therapy, respectively, [76, 77].

Mesenchymal Stem Cells. Mesenchymal stem cells (MSCs)
are multipotent ASCs with capacity to differentiate into meso-
dermal lineages. They are initially described in the bone mar-
row, and subsequently identified in umbilical cord blood,
adipose tissues, muscles, endometrium, etc. [78, 79]. Because
of their immunoprivileged properties, MSCs of different ori-
gins can serve as “off-the-shelf” cell products for allogeneic
transplantation [79]. As revealed in the recent trials (Table 1),
both autologous and allogeneic, bone marrow- and non-bone
marrow-derived (e.g., Wharton’s jelly of the umbilical cord)
MSC therapy conferred benefits in LVEF recovery or other effi-
cacy endpoints for patients with AMI and chronic IHDs [7, 23,
24, 27, 29]. Various animal studies suggest that transplanted
MSCs not only differentiate into cardiomyocytes and vascular
cells, but also secrete a wide array of paracrine factors to
mediate endogenous cardiac repair via activating resident
stem cells, stimulating neovascularization, decreasing apopto-
sis, reducing inflammation, and preventing fibrosis. However,
the cardiovascular differentiation potential of MSCs remains
limited, and the benefits of MSC therapy may largely depend
on the paracrine activity of these cells [67, 79, 80].

Cardiac Progenitor Cells. Various populations of resident car-
diac stem/progenitor cells have been identified within adult
mammalian myocardium by multiple cell markers, such as c-
Kit, Sca-1, Isl-1, and Abcg2 [81–85]. Among them, c-Kit1 cells
and cardiosphere-derived cells (CDCs) have undergone clinical
translation. c-Kit1 cells are isolated from endomyocardial tis-
sue biopsies by immunomagnetic selection, while CDCs are
generated from cardiac tissue-developed multicellular cardio-
spheres, with uniform expression of CD105 and partial expres-
sion of c-Kit. Both c-Kit1 cells and CDCs are clonogenic and

2 Optimization of Stem Cells and Microenvironments
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multipotent, possessing the ability to differentiate into cardio-
myocytes, vascular smooth muscle and endothelial cells. As
highlighted in the SCIPIO and CADUCEUS trails (Table 1), intra-
coronary infusion of either autologous c-Kit1 cells or CDCs
conferred improvements in scar size and regional myocardial
function in patients with IHDs, without raising any significant
safety concerns such as ventricular arrhythmias and tumor
formation [13, 14, 30, 31]. Currently, allogeneic human CDCs
are being investigated in the ALLSTAR and DYNAMIC trials [6]
(Table 1). Unexpectedly, the interim observations from ALL-
STAR did not demonstrate scar size improvement after cell
therapy, however, LV volume reductions in the cell-treated
patients supported the biological activity of these cells
(http://www.irdirect.net/prviewer/release/id/2492977). Mean-
while, allogeneic c-Kit1 cell therapy for AMI is about to begin
in the CAREMI trial [86].

The underlying mechanisms of cardiac progenitor cell
(CPC) therapy are initially attributed to the cardiac differentia-
tion potential of these cells [81, 82]. However, it eventually
become widely accepted that paracrine mechanisms other
than direct cardiac differentiation contribute to the beneficial
effects of CPC therapy [51, 62, 63, 66]. Notably, CDCs outper-
formed commercial cell sources that may not have been opti-
mized for regenerative potency (i.e., BMCs and MSCs) and c-
Kit1 cells antigenically sorted from expanded CDCs (i.e., not
cultured using validated methods in SCIPIO trial) in terms of
paracrine activity and functional benefits in infarcted rodent
hearts [55]. However, another comparison study, based on
large animal models of chronic MI, demonstrated equivalent
improvements in cardiac regional function and myocyte
regeneration after intracoronary infusion of allogeneic CDCs
and MSCs [87].

Combined Cell Therapy

Although the optimal cell type has not been concluded yet,
combined cell therapy has recently raised great interest of
many investigators. Relative to single cell therapy, combined
cell therapy, such as CSCs plus MSCs [88, 89], CSCs plus vascu-
lar pericyte progenitors [90] or CSC and MSC hybrids [91], has
been demonstrated more effective in reducing infarct size,
improving cardiac contractile function, or both in preclinical
MI models. The synergistic effects are probably due to the
complementary properties from different subsets of stem cells
that, for example, CSCs are superior in direct cardiac differen-
tiation and activation of endogenous stem cells, MSCs in para-
crine activity and vascular pericyte progenitors in inducing
angiogenesis.

CELL DOSE

The optimal cell dose chosen for therapy is critical for pro-
moting cardiac repair. However, as reviewed in Table 1, the
cell dose varies in the recently published trials. The BOOST-2
trial assessed the dose and clonogenic potential of BMC ther-
apy in LVEF recovery in AMI patients, but did not detect any
improvements in LVEF or any magnetic resonance imaging
secondary endpoints in patients treated with a high or low
dose of clonogenic or nonclonogenic BMCs [4]. The TECAM
trial compared the efficacy of BMC injection, granulocyte
colony-stimulating factor (G-CSF) mobilization and the

combined therapy in AMI patients. Although patients in the
combined therapy group received a dose of BMCs seven
times higher than that given to patients in the BMC therapy
group (average 560 vs. 83 3 106 cells), neither group showed
improvements in LVEF and LV end-systolic volume (LVESV),
but both groups exhibited a small reduction in infarct area
[8].

In patients with chronic ischemic cardiomyopathy, a dose-
escalation study of allogeneic mesenchymal precursor cell
(MPC) therapy (25, 75, or 150 3 106 cells) revealed that MPC
injections were feasible and safe, but only a high dose of
MPCs (150 3 106 cells) was beneficial in decreasing LVESV
and LV end-diastolic volume (LVEDV) at 6 months [26]. How-
ever, the early POSEIDON trial found an inverse dose response
to autologous and allogeneic MSC therapy, demonstrating
that a high dose of MSCs (200 3 106 cells) was less effective
in reducing LV volumes and increasing LVEF than a low dose
of MSCs (20 3 106 cells) [29].

Recently, multiple-dose administrations of stem cells have
been demonstrated more effective than single-dose adminis-
tration. Tokita et al. and Guo et al. successively showed that
three-dose infusions of c-Kit1 CPCs or cardiac mesenchymal
cells had cumulative beneficial effects in improving LV func-
tion in rodent models of old MI, compared with one-dose
infusion [92, 93]. Reich et al. also revealed that two-dose
injections of allogeneic CDCs in infarcted rat hearts led to
greater improvements in cardiac function and infarct size [94].
These results indicate that although the optimal cell dose
remains elusive, repeated doses of stem cells may provide
therapeutic superiority in cardiac repair.

CELL DELIVERY ROUTE

The major techniques to effectively deliver cells to the heart
include intracoronary infusion and intramyocardial (transendo-
cardial) injection. As reviewed in Table 1, intracoronary infu-
sion is widely used for autologous BMC therapy in AMI
patients, whereas in chronic ischemic cardiomyopathy, intra-
myocardial injection seems to provide better clinical out-
comes. However, clinical trials comparing different delivery
routes are relatively fewer. Vrtovec et al. reported the first
study that transendocardial CD341 cell transplantation pro-
duced higher myocardial retention rates and greater func-
tional improvements in patients with dilated cardiomyopathy,
compared with intracoronary group [75]. The recent
REGENERATE-IHD trial investigated the efficacy of G-CSF alone
or in combination with intracoronary or intramyocardial injec-
tion of autologous BMCs in patients with ischemic cardiomy-
opathy, and found that the combination of G-CSF and
intramyocardial BMC injection exerted beneficial effects on
cardiac function and symptoms, while other treatment groups
did not show such improvements [21].

Intramyocardial injection has certain advantages over intra-
coronary infusion [67, 95]. First, based on a preclinical animal
study, intramyocardial injection led to higher cell retention rates
within the myocardium than intracoronary delivery route (11%6

3% vs. 2.6%6 0.3%) [96], probably because the majority of cells
were washed out during coronary infusion. Second, intramyocar-
dial injection provides a targeted approach to deliver cells into
the damaged myocardium, without requiring chemoattractive
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factors that are more abundant in AMI. However, the procedure
of intramyocardial injection requires 3D NOGA equipments and
skilled technicians to map the endocardial surface during injec-
tion. On the other hand, intracoronary infusion is technically eas-
ier and cost-effective, however, it may cause vessel occlusion.

CELL DELIVERY TIMING

The timing of cell delivery is an important determinant for
the incorporation and efficacy of stem cells in myocardial
repair. So far, most preclinical animal studies use early deliv-
ery of stem cells following MI to assess their therapeutic
effects, even though several comparative studies suggested
that delivery of stem cells after the acute inflammation period
of MI (1-week after MI) resulted in a greater infarct reduction
compared with early (�1-day) injection [97, 98]. In the clinical
arena, a number of phase I/II trials assessing the timing of
cell delivery in autologous BMC therapy have reported vari-
able results (Table 1). As revealed in the TIME, LateTIME, and
SWISS-AMI trials, both early (3 or 7 days, 5–7 days) and late
(2–3 weeks, 3–4 weeks) delivery of BMCs following reperfu-
sion failed to improve LV function in AMI patients [11, 12, 15,
16]. However, another comparative trial reported that AMI
patients receiving BMCs either within 24 hours of reperfusion
or 3–7 days after reperfusion displayed similar improvements
in LV function and volumes, whereas patients receiving treat-
ment at 7–30 days after reperfusion did not show such
improvements [9]. Similarly, the REGENERATE-AMI trial demon-
strated that BMC infusion within 24 hours of reperfusion in AMI
patients led to a small nonsignificant improvement in LVEF [5],
indicating a feasible timeframe of cell delivery in BMC therapy
for AMI patients without prolonging hospitalization.

Nevertheless, late delivery of stem cells is not very inef-
fective for MI patients, and it may also be cell type depen-
dent. In the CADUCEUS trial, CDC therapy at 1.5–3 months
post-MI resulted in decreased scar size, increased viable myo-
cardium and improved regional function [13, 14], probably
due to the superiority of CDCs over BMCs in cardiac repair as
mentioned above [55].

POTENTIAL MECHANISMS OF STEM CELL-MEDIATED MYOCARDIAL

REPAIR

So far, three major mechanisms have been proposed to con-
tribute to the beneficial effects of stem cell-based therapy in
cardiac diseases [67, 71, 80]. First, transplanted stem cells dif-
ferentiate into cardiomyocytes to replace damaged cardiac tis-
sues. Second, transplanted stem cells form new blood vessels
by differentiating into vascular cells. However, because of the
low retention and poor survival of transplanted cells, the
above mechanisms may not account for the global improve-
ments in cardiac remodeling and function.

The third mechanism, widely accepted by most investi-
gators, is that stem cells secrete high levels of paracrine fac-
tors (comprising the secretomes) that can stimulate
endogenous repair mechanisms. An important component of
secretomes in many cell types are extracellular vesicles, par-
ticularly exosomes. Exosomes are considered critical vehicles
for intercellular delivery of bioactive cargoes, including pro-
teins, lipids, mRNAs, and microRNAs (miRs) [99]. According to

various animal studies, secretomes/exosomes derived from a
variety of stem cells have been shown to improve cardiac
function and attenuate adverse remodeling after delivery into
the injured myocardium (Table 2). Some investigators, through
comparative analysis, indicated that stem cell-derived secre-
tomes/exosomes resembled and even outperformed stem
cells in their abilities of cardiac repair [43, 44, 51]. The para-
crine factors and exosomal miRs identified in these studies
have been proposed to participate in promoting angiogenesis,
mediating the survival of existing cardiomyocytes, supporting
the recruitment, proliferation and differentiation of endoge-
nous stem cells, improving cardiac hypertrophy, reducing
inflammation, and preventing fibrosis (Table 2).

Remarkably, some exosomal miRs are involved in boosting
cardiac repair. miR-17 [65] and miR-19a [59] are members of
miR-17–92 cluster, which was identified as critical regulators
of cardiomyocyte proliferation in hearts. Overexpression of
miR-17–92 in adult cardiomyocytes protected the heart from
MI-induced injury [100]. Co-administration of miR-199a [65]
and miR-590 mimics was demonstrated effective in attenuat-
ing infarct size and improving cardiac function in mouse MI
models [101]. miR-132 [66] was reported to activate pro-
hypertrophic signaling. Injection of miR-132 inhibitor rescued
cardiac hypertrophy and heart failure in mice [102].

Recently, the first translationally realistic large-animal
study by Gallet et al. investigated the delivery routes and
therapeutic efficacy of human CDC-derived exosomes in acute
and convalescent MI [62]. They found that intramyocardial
injection of CDC exosomes resulted in preserved LV function
and reduced scar size, accompanied by an increase in vessel
density and a decline in LV collagen content and cardiomyo-
cyte hypertrophy. These findings may promote the clinical
translation of stem cell-derived exosomes as an attractive cell-
free resource for cardiac repair in future, and exosomal miRs
may serve as potential therapeutic targets.

Long noncoding RNAs (lncRNAs) with unique regulatory
and functional characteristics have been reported to play
potential roles in cardiac pathologies [103]. For example,
lncRNA Chaer was defined as an epigenetic modulator in car-
diac hypertrophy via interacting with polycomb repressor
complex 2 and reprogramming of cardiac hypertrophy-
associated genes [104]. LncRNA Meg3 was found to regulate
cardiac fibrosis after transverse aortic constriction by inducing
cardiac matrix metalloproteinase-2 [105]. Nevertheless,
detailed reports on lncRNAs regulating stem cell-mediated car-
diovascular repair are relatively fewer. The first observation by
Deng et al. revealed that genetically modified human MSCs
augmented the survival and function of endogenous progeni-
tor cells in mouse ischemic tissues by regulating lncRNA H19
[106]. The novel mechanism of stem cells in cardiovascular
repair by targeting lncRNAs will become a research hotspot in
the near future.

OPTIMIZED STRATEGIES FOR STEM CELL-BASED THERAPY

Irrespective of cell type, dose, delivery routes and timing,
stem cell transplantation has shown extremely low rates of
cell survival and retention, which largely limit the therapeutic
outcomes. First, even after direct intramyocardial injection,
the majority of cells leak out of the heart or are washed away
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owing to blood flow [107]. Second, post-infarction hearts
undergo complex and dynamic pathological changes, display-
ing a harsh ischemic and inflammatory microenvironment in
the acute phase of MI. Thus, the injected cells encounter a
massive death because of ischemia, inflammation-related oxi-
dative stress and detrimental cytokines, as well as anoikis
(apoptosis in anchorage-dependent cells after detachment
from their substrate) [37, 67]. To overcome these challenges,
physical, chemical/pharmacological, and genetic approaches
have been adopted to precondition and reprogram stem cells
to augment their survival and/or function after transplanta-
tion. Moreover, statin treatment and tissue engineering can
create a favorable cardiac microenvironment to facilitate the
incorporation and effect of implanted cells during myocardial
repair. A graphical overview of different strategies is given in
Figure 1. The clinical translatability and potential limitation of
each strategy are discussed below.

STRATEGIES TO AUGMENT CELLULAR SURVIVAL AND/OR

FUNCTION

Physical Stimulation (Hypoxic Preconditioning)

Physical stimulations, such as hypoxic preconditioning and
heat shock, seem to be practical with minimal safety con-
cerns. For the past decade, hypoxic preconditioning of stem
cells by short-term exposure to low oxygen tensions has been
well documented to enhance cellular survival, migration, and
therapeutic efficacy in ischemic animal hearts [108–110],
although oxygen concentration, preconditioning duration, and
cell types are different in these studies. The underlying mech-
anisms primarily depend on hypoxia inducible factor (HIF)-1,
which consists of oxygen-sensitive HIF-1a and constitutive
HIF-1b subunits. Under hypoxic conditions, HIF-1a is stabilized
and binds with HIF-1b to form a heterodimeric HIF that is
subsequently translocated to the nucleus to activate down-
stream genes [111, 112]. In our previous studies, an adipokine
leptin, whose promoter contains a hypoxia response element
site driven by HIF-1 [113], displayed the highest increase in
expression in hypoxic preconditioned MSCs [114]. Leptin
played crucial roles in enhancing the survival and engraftment
of transplanted MSCs, conferring cardioprotective and angio-
genic properties and recruiting endogenous progenitor cells in
autocrine and paracrine manners by binding to its receptor
ObR and subsequently activating JAK/signal transducer and
activator of transcription (STAT) 3/stromal cell-derived factor
(SDF)-1/CXCR4 signaling [115]. Additionally, two studies
showed that hypoxic conditions altered miR content in CPC-
secreted exosomes and improved their post-MI repair. These
exosomal miRs were respectively associated with promoting
angiogenesis, reducing fibrosis, attenuating apoptosis, and
improving cardiac hypertrophy [63, 65] (Table 2).

To promote the clinical translation of hypoxic precondi-
tioned cell therapy, preclinical studies based on nonhuman
primates are truly required to ensure safety and confirm pos-
sible clinical benefits [116]. Accordingly, we performed the
first large sample size, long-term, nonhuman primate investi-
gation of hypoxic preconditioned MSC therapy for the treat-
ment of cardiac injury [117]. Our results showed that
transplantation of hypoxic preconditioned MSCs led to signifi-
cant improvements in cardiac function and remodeling,

accompanied by an increase in cell engraftment, cardiomyo-
cyte survival and proliferation, angiogenesis and myocardial
glucose metabolism, as well as a decline in myocardial inflam-
mation, without increasing the occurrence of arrhythmias.
However, the lack of evidence of MSC differentiation and
<1% engraftment of transplanted cells suggested that para-
crine mechanisms, rather than remuscularization of the
infarcted region, might contribute to the benefits of hypoxic
preconditioned MSC therapy.

Following the encouraging results, hypoxic preconditioned
cell therapy has advanced to clinical trial. The CHINA-AMI ran-
domized controlled trial provided the first-in-man evidence
that intracoronary administration of hypoxic preconditioned
autologous BMCs significantly reduced LVEDV/LVESV and post-
poned LV remodeling in AMI patients, without increasing the
occurrence of major adverse cardiovascular events [10] (Table
1). Although apparently safe and feasible, the efficacy of this
strategy needs further evaluation in phase II/III trials and in
larger cohorts of patients. These results serve as a possible
basis for promoting hypoxic preconditioned cell therapy
toward future clinical application.

Physical Stimulation (Heat Shock)

Heat shock by short-term exposure of cells to mild heat stress
(428C 2438C) is another physical approach that has been
shown to enhance the survival of skeletal myoblasts, neonatal

Figure 1. A graphical overview of different optimized strategies
for manipulating both donor stem cells and the cardiac microen-
vironment in stem cell-based therapy. Abbreviations: HIF-1, hyp-
oxia inducible factor-1; HSPs, heat shock proteins.
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cardiomyocytes, and hESC-derived cardiomyocytes after trans-
plantation into hearts [118–120]. Heat shock is usually accom-
panied by the upregulation of heat shock proteins (HSPs)
[118, 119], which have been proven as prosurvival factors.
MSCs respectively engineered with HSP20, HSP70, or HSP27
were protected against oxidative stress- or hypoxia/ischemia-
induced cell death, and they showed enhanced survival rates
and therapeutic efficacy in infarcted rat hearts [121–123].
Additionally, Feng et al. demonstrated that heat shock signifi-
cantly improved the survival of Sca-11 stem cells under ische-
mic conditions through heat shock factor (HSF) 1-mediated
epigenetic repression of miR-34a expression and direct upre-
gulation of HSP70 [124].

Heat shock can also improve the paracrine effects of stem
cells. For example, heat shocked Sca-11 stem cells exerted
cardioprotective effects on ischemic myocardium by exosomal
delivery of HSF1 into cardiomyocytes and repression of miR-
34a [124]. Another study reported that after heat shock, CDCs
secreted high levels of cytokines such as SDF-1a, vascular
endothelial growth factor (VEGF)-A, platelet-derived growth
factor (PDGF)-A, interleukin(IL)-6, and fibroblast growth factor
(FGF)-2, thereby restoring the injured myocardium to a
greater extent [53].

Nevertheless, heat shocked cell therapy has been confined
to rodent studies so far, probably due to the variable and
complex nature of heat shock responses in different cells. For
example, heat shock protected myoblast sheets from hypoxia-
induced apoptosis but attenuated their VEGF expression, lead-
ing to a reduction in their therapeutic efficacy in heart failure
[125]. Furthermore, HSPs such as HSP70 can be very immuno-
genic for enhanced innate and T cell response [126–128],
which may induce host immune reaction after transplantation
of heat shocked cells. Thus, these challenges need to be
solved before heat shocked cell therapy can be considered for
clinical application.

Chemical/Pharmacological Treatment

Small chemical/pharmacological molecules have certain
advantages in optimizing stem cells: easy usage, efficient
delivery into cells, nonimmunogenicity, and cost-effectiveness.
Various chemical/pharmacological agents that activate oxygen-
sensing pathways possess high potential for enhancing stem
cell-based therapy. 2,4-dinitrophenol (DNP) can induce chemi-
cal hypoxia via inhibiting the electron transport chain and
decreasing intracellular ATP production [129]. DNP treatment
was found to activate a series of survival, angiogenic, and car-
diomyogenic factors in MSCs. Transplantation of DNP treated
MSCs into infarcted rodent hearts led to an increase in cell
engraftment and cardiovascular differentiation, thereby
improving cardiac performance and revascularization [130,
131]. Deferoxamine (DFO), an FDA-approved iron chelator, can
inhibit the activity of prolyl hydroxylase that is involved in
HIF-1a degradation. DFO treatment was reported to enhance
the angiogenic potential of MSCs via HIF-1a-mediated secre-
tion of paracrine factors such as VEGF and SDF-1a [132, 133].
Carvedilol, a nonselective b-blocker with antioxidant proper-
ties for superoxide scavenging, was reported to protect MSCs
against oxidative stress-induced cell death [134]. Diazoxide, a
highly selective mitoKATP channel opener, was shown to
enhance the survival and therapeutic effects of MSCs for the
repair of infarcted myocardium via NF-kappaB-dependent

miR-146a expression by targeting Fas, a tumor necrosis factor
(TNF) receptor superfamily member [135].

Additionally, various pharmacological agonists targeting
cardiovascular system have emerged in myocardial cell ther-
apy. Angiotensin type 2 receptor (AT2R), a major compo-
nent of renin-angiotensin (RAS) system, plays an important
role in cardiac repair after MI [136]. According to our pre-
vious studies, preconditioning of BMCs with an AT2R ago-
nist CGP42112A exerted cardioprotective effects via the
activation of ERK/endothelial nitric oxide synthase (eNOS)/
nitric oxide (NO) signaling. Transplantation of AT2R-
stimulated BMCs improved overall cardiac performance and
reduced infarct size in rat infarcted hearts by increasing the
survival and mobilization as well as anti-inflammatory, car-
dioprotective, and angiogenic properties of transplanted
cells [137, 138].

Chemical reprogramming of fibroblasts into functionally
induced cardiomyocytes holds great promise for cardiac
regeneration. Numerous chemical compounds have been
tested, such as the transforming growth factor-b inhibitor
SB431542, the glycogen synthase kinase-3 inhibitor
CHIR99021, the Wnt inhibitor XAV939, the PDGF pathway
inhibitors SU16F and JNJ10198409, as well as Forskolin and
Parnate [139–141]. Fu et al. and Cao et al. successively
reported the generation of cardiomyocyte-like cells from
mouse and human fibroblasts using different chemical cock-
tails. These chemically induced cardiomyocyte-like cells exhib-
ited contractile properties and cardiac-specific transcriptomes
[139, 140]. When transplanted into infarcted rodent hearts,
chemically treated human fibroblasts further matured into
cardiomyocytes and partially remuscularized the infarcted area
[140]. The chemical approach of cardiac-lineage reprogram-
ming may provide important implication for optimizing stem
cells and enhancing their cardiogenic potency.

Most chemical/pharmacological reagents used in these
studies are not FDA-approved drugs. Their clinical application
would be restricted by human safety issues related to cardio-
toxicity, hepatotoxicity, neurotoxicity, and teratogenicity [142].
To advance the clinical application of chemical/pharmacologi-
cal treated cell therapy, cardiovascular drugs with similar
effects and proven safety profiles should be explored to sub-
stitute for these compounds to optimize stem cells. For exam-
ple, the phosphodiesterase-5 inhibitors including tadalafil,
have been approved for clinical use in patients with pulmo-
nary arterial hypertension [143]. Recently, tadalafil was
reported to promote MSC survival in ischemic hearts for car-
diac repair via miR-21-dependent suppression of Fas [144].

Genetic Modification

Ex vivo genetic modification of stem cells is a powerful strat-
egy to increase cell survival, paracrine factor secretion and
reparative capacity in the damaged myocardium. Overexpres-
sion of prosurvival signaling molecules (e.g., Akt, Bcl-2, and
Bcl-xL) [145–147] or knockdown of apoptotic factors (e.g., cas-
pase-8) [148] in MSCs have been proven to augment cell sur-
vival and efficacy in ischemic rat hearts. Pim-1 kinase is a
downstream effector of Akt. Transplantation of Pim-1 overex-
pressing CSCs showed increased cell engraftment and differ-
entiation, as well as enhanced myocyte formation and
neovascularization, resulting in augmented cardiac function
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and reduced infarct size in small and clinically relevant large
animal models of MI [149, 150].

In addition to antiapoptotic factors, numerous genes
encoding cytokines, chemokines or growth factors, such as
angiopoietin-1 (Ang-1), VEGF, insulin-like growth factor 1 (IGF-
1), SDF-1a, or hepatocyte growth factor (HGF), have been
genetically engineered into stem/progenitor cells to enhance
their ability to persistently express and secrete these factors.
This can not only augment cellular survival, retention, and dif-
ferentiation, but also promote endogenous cardiac repair
through paracrine mechanisms [151–155].

miRs have been proposed as important regulators in stem
cell-mediated cardiac repair [156]. The therapeutic efficacy of
stem cells in damaged myocardium can be markedly
enhanced by manipulating them with specific miRs. According
to our recent studies, miR-211, which was activated by STAT3,
improved MSC migration by targeting STAT5A and regulating
MAPK signaling. Intravenous delivery of miR-211 overexpress-
ing MSCs led to a significant increase in cell retention, vessel
density, and viable myocardium in the peri-infarct area [157].
Furthermore, transplantation of stem/progenitor cells respec-
tively modified with miR-1, miR-23a, miR-375, miR-133a, let-
7b, miR-377, or miR-495 was shown to attenuate infarct size
and improve ventricular function in ischemic rodent hearts.
Mechanistically, manipulation of these miRs variously
increased the survival, engraftment, and differentiation of
transplanted cells or enhanced their cardioprotective and
proangiogenic activities [158–164].

Meanwhile, genetic modification can impact the therapeu-
tic efficacy of stem cell-released exosomes (Table 2). For
example, exosomes secreted from GATA-4 overexpressing
MSCs exerted cardioprotective effects on ischemic myocar-
dium by delivering miR-19a into cardiomyocytes, reducing
PTEN and activating Akt/ERK signaling [59]. Akt overexpressing
MSC-derived exosomes promoted angiogenesis in ischemic
myocardium by delivering high levels of PDGF-D [58].

Despite encouraging preclinical results, the clinical applica-
tion of genetically modified stem cell therapy has been
impeded by several challenges. First, the commonly used
gene vectors, including retro-/lentiviral vectors, can result in
random integrations that may activate nearby proto-
oncogenes by insertional mutagenesis. Moreover, nontargeted
gene transfer using viral vectors often causes the risk of trans-
gene inactivation. The genotoxicity may alter cellular functions
particularly in stem cells (e.g., tumorigenicity, immunogenicity,
and differentiation potential) [165–167]. Second, the constitu-
tive and unregulated expression of transgenes may induce
tumorigenesis and other detrimental effects [168, 169]. There-
fore, exploring safe and stable genetic modification systems,
such as site-specific integration techniques using nonviral vec-
tors [170] or the combined utility of adeno-associated virus
and clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated nuclease 9 (Cas9) system [171], is
likely required before genetically modified stem cell therapy
progresses to clinical settings. Recently, the first-in-human
transendocardial delivery of genetically modified stem/progen-
itor cells using nonviral vectors for the treatment of advanced
heart failure was demonstrated to be safe, feasible, and effec-
tive [19] (Table 1), indicating a breakthrough for the clinical
application of genetically modified stem cell therapy in cardiac
diseases.

STRATEGIES TO OPTIMIZE CARDIAC MICROENVIRONMENTS

Statin Treatment

Statins, HMG-CoA reductase inhibitors, are one of the most
heavily prescribed drugs that have pleiotropic effects on the
cardiovascular system [172]. Based on various preclinical ani-
mal studies, statin (e.g., atorvastatin, simvastatin, or rosuvas-
tatin) treatment could modulate the post-infarct milieu by
inhibiting cardiac cell apoptosis, oxidative stress, and inflam-
mation, as well as increasing regional blood perfusion,
thereby facilitating the survival, engraftment, and cardiovascu-
lar differentiation of implanted MSCs. Statin/MSC combined
therapy after MI exhibited greater improvements in cardiac
function and remodeling than those from either statin treat-
ment or MSC transplantation alone. The underlying mecha-
nisms involved the activation of eNOS or JAK2/STAT3 or the
inhibition of RhoA/ROCK/ERK in the infarcted myocardium
[173–179]. Additionally, statin administration could enhance
the mobilization and homing of stem cells into the ischemic
myocardium via upregulating cardiac SDF-1a and activating
CXCR4 coupling [180]. The SDF-1a/CXCR4 axis-driven stem/
progenitor cell recruitment can also be achieved by fucoidan
(sulfated polysaccharide) [181], tadalafil [144], parathyroid
hormone [182], and erythropoietin [183] treatment, respec-
tively. Despite promising results, the combined therapy for
IHDs has not been reported in human studies yet, and two
clinical trials evaluating the therapeutic efficacy of BMCs/
MSCs with atorvastatin in MI patients are still ongoing
(NCT00979758 and NCT03047772).

Recently, several in vitro studies revealed that statin treat-
ment impaired the biological characteristics of stem cells by
inhibiting cell proliferation or increasing cell senescence and apo-
ptosis [184–186]. The adverse cytostatic effect of statins may
compromise the activation, proliferation, differentiation, and
recruitment of endogenous stem cells to the damaged myocar-
dium, which are usually involved in cardiac repair process. Fur-
thermore, statin treatment can cause several adverse effects
including myopathy, rhabdomyolysis, liver damage, and type 2
diabetes [187]. Therefore, the dosage, treatment duration, and
potential side effects of statins need to be evaluated further
before this strategy can be translated to clinical settings.

Tissue Engineering

The injured myocardium lacks the specific architecture, vascu-
larity, and metabolism of normal cardiac tissues. Tissue engi-
neering, via engineering stem cells on scaffolds, has been
demonstrated to be an ideal strategy with synergistic effects,
which not only allows the grafted cells to be retained longer
in the infarcted hearts, but also provides a supportive envi-
ronment to the damaged myocardium [188]. So far, a variety
of autologous and allogeneic stem cells have been used. The
scaffolds to seed cells have varied from hydrogels to 3D
patches with natural or synthetic sources. In the AUGMENT-
HF trial, injectable hydrogels were demonstrated to modify
the shape of the dilated LV and improve the clinical outcomes
of patients with advanced heart failure [189, 190]. Accumulat-
ing evidence suggests that hydrogels and/or bioactive agents
can act as injectable delivery vehicles for stem cells to
enhance the survival, retention and efficacy of these cells in
the infarcted hearts. For example, transplantation of hydrogel-
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encapsulated ESCs or MSCs showed a better cardiac remodel-
ing and functional improvement than that due to regular cell
transplantation or hydrogel injection alone [191, 192]. Hydro-
gels combined with antioxidant nanoparticles were reported
to effectively scavenge reactive oxygen species in the MI area
and protect delivered MSCs from oxidative damage, thereby
improving their survival and therapeutic effects [193].

Three-dimensional (3D) patch-based systems are being
widely studied for cardiac repair. Using a porcine MI model,
Ye et al. demonstrated that, compared with regular cell trans-
plantation, injection of human iPSC-derived cardiovascular
cells through an IGF-1-containing 3D patch resulted in a two-
fold increase in the engraftment rate of transplanted cells,
leading to significant improvements in myocardial wall stress,
metabolism, and contractile performance [194]. The cytokine-
loaded patch not only formed a physical barrier to retain the
cells locally, but also enabled prolonged cytokine release to
promote cell survival.

In combination with extracellular matrix bioinks, 3D printing
technology can produce precisely controlled 3D tissues by mim-
icking the outer shape and inner architecture of native tissues
[195]. Several groups reported that 3D-printed scaffolds could
improve cell-cell interactions, as well as cellular survival and dif-
ferentiation after being seeded with different cell types, such as
CPCs and MSCs [196, 197]. Gao et al. demonstrated that 3D-
printed scaffolds promoted the maturation, calcium signaling
and functional electrophysiological integration of seeded human
iPSC-derived cardiovascular cells to generate beating cardiac
patches [198]. After transplanted into the infarcted myocardium,
these cell patches enhanced cardiac function and prevented
adverse remodeling, accompanied by a relatively long-term and
high rate of cell engraftment, as well as enhanced cardiomyo-
genesis and angiogenesis [196–198].

Given the promising outcomes, significant efforts are under-
way to translate cardiac patches to clinical trials. As mentioned
above, human ESC-derived cardiac patch is a good example of a
cell and tissue engineered construct that has been translated to
the clinical setting [25, 70]. Furthermore, the manufacturing pro-
cess and quality control of biomaterial products for clinical appli-
cation must comply with GMP standards.

CONCLUSION AND FUTURE PERSPECTIVES

Since 2001, stem cell-based therapy has become a remarkably
potential strategy for cardiac repair/regeneration and func-
tional recovery after AMI and other chronic IHDs. Despite
encouraging results in substantial preclinical animal studies,
the therapeutic effects of stem cells remain controversial in
the clinical community as many trials do not confer sufficient
benefits for patients suffering from cardiac injury. To promote
cell therapy toward successful clinical application, many key
issues (e.g., the optimal cell type, dose, delivery route and
timing, precise mechanisms of action, long-term cell engraft-
ment) need to be fully addressed with more molecular, trans-
lational and clinical studies [199].

With respect to the cell type, PSCs (e.g., ESCs and iPSCs)
and ASCs (e.g., MSCs and CPCs) have different superiority and
mechanisms in repairing the injured hearts. Direct head-to-head
comparative studies with detail design are truly required to

define the optimal cell type. Combined cell therapy that comple-
ments properties from different types of stem cells may exert
synergistic effects in cardiac repair. The optimal cell dose, deliv-
ery route, and timing are important determinants for increased
cell engraftment and enhanced therapeutic efficacy. Although
numerous studies are accumulating with variable results, it is
likely that intramyocardial delivery and repeated dose adminis-
tration can produce higher cell retention and greater therapeutic
outcomes.

It is widely accepted that paracrine mechanisms rather
than de novo cardiomyocyte or blood vessel formation may
be the major mechanisms underlying the beneficial effects of
stem cell-based therapy. Stem cell-derived secretomes/exo-
somes have shown therapeutic superiority as an attractive
cell-free resource. The underlying regulatory components
(e.g., protein, miRs, lncRNAs) are being identified and gradu-
ally become potential targets in boosting cardiac repair.
Encouraging results from the first translationally large animal
study provide a possible basis for promoting stem cell-derived
exosomes toward clinical application in future.

Due to hostile microenvironment of the injured myocar-
dium, poor survival and low engraftment of transplanted stem
cells severely limit the therapeutic potential of cell therapy.
Various optimized strategies including physical, chemical,
pharmacological, genetic, biomaterial approaches are being
investigated for manipulating both donor stem cells and the
target cardiac microenvironment to enhance the engraftment
and efficacy of stem cells. Several strategies have already pro-
gressed to phase I clinical trials, such as hypoxic precondition-
ing, genetic modification, and tissue engineering. However, in
many cases, larger randomized clinical trials and more clini-
cally relevant large animal studies are truly required to over-
come limitations and accelerate the progress of optimized
strategies toward FDA-approved clinical applications.
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